Three-Dimensional Integrated Fan-Out Wafer-Level Package Micro-Bump Electromigration Study

Author:

Tian Wenchao12,Gao Ran1,Gu Lin3,Ji Haoyue23,Zhou Liming4

Affiliation:

1. Hangzhou Institute of Technology, Xidian University, Hangzhou 311231, China

2. School of Electro-Mechnical Engineering, Xidian University, Xi’an 710071, China

3. Zhongkexin Integrated Circuit Co., Wuxi 214035, China

4. Yangzhou Yangjie Electronic Technology Co., Ltd., Yangzhou 225008, China

Abstract

To meet the demands for miniaturization and multi-functional and high-performance electronics applications, the semiconductor industry has shifted its packaging approach to multi-chip vertical stacking. Among the advanced packaging technologies for high-density interconnects, the most persistent factor affecting their reliability is the electromigration (EM) problem on the micro-bump. The operating temperature and the operating current density are the main factors affecting the EM phenomenon. Therefore, when a micro-bump structure is in the electrothermal environment, the EM failure mechanism of the high-density integrated packaging structure must be studied. To investigate the relationship between loading conditions and EM failure time in micro-bump structures, this study established an equivalent model of the vertical stacking structure of fan-out wafer-level packages. Then, the electrothermal interaction theory was used to carry out numerical simulations in an electrothermal environment. Finally, the MTTF equation was invoked, with Sn63Pb37 as the bump material, and the relationship between the operating environment and EM lifetime was investigated. The results showed that the current aggregation was the location where the bump structure was most susceptible to EM failure. The accelerating effect of the temperature on the EM failure time was more obvious at a current density of 3.5 A/cm2, which was 27.51% shorter than 4.5 A/cm2 at the same temperature difference. When the current density exceeded 4.5 A/cm2, the change in the failure time was not obvious, and the maximum critical value of the micro-bump failure was 4 A/cm2~4.5 A/cm2.

Funder

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on the Reliability of Advanced Packaging under Multi-Field Coupling: A Review;Micromachines;2024-03-22

2. A process method for making BGA solder mask using nickel oxide;2023 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM);2023-07-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3