On the Vertically Stacked Gate-All-Around Nanosheet and Nanowire Transistor Scaling beyond the 5 nm Technology Node

Author:

Wong Hei,Kakushima Kuniyuki

Abstract

This work performs a detailed comparison of the channel width folding effectiveness of the FinFET, vertically stacked nanosheet transistor (VNSFET), and vertically stacked nanowire transistor (VNWFET) under the constraints of the same vertical (fin) height and layout footprint size (fin width) defined by the same lithography and dry etching capabilities of a foundry. The results show that the nanosheet structure has advantages only when the intersheet spacing or vertical sheet pitch is less than the sheet width. Additionally, for the nanowire transistors, the wire spacing should be less than 57% of the wire diameter in order to have a folding ratio better than a FinFET with the same total height and footprint. Considering the technological constraints for the gate oxide and metal gate thicknesses, the minimum intersheet/interwire spacing should be in the range of 7 to 8 nm. Then, the VNSFET structure has the advantage of boosting the chip density over the FinFET ones only when the sheet width is wider than 8 nm. On the other hand, the VNWFET structure may have a better footprint sizing than the FinFET ones only when the nanowire diameter is larger than 14 nm. In addition, considering the different channel mobilities along the different surface directions of the silicon channel and also some other unfavorable natures such as more complicated processes, more significant surface roughness scattering, and parasitic capacitance effects, the nanosheet transistor does not show superior scaling capability than the FinFET counterpart when approaching the ultimate technology node.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3