Future of plasma etching for microelectronics: Challenges and opportunities

Author:

Oehrlein Gottlieb S.1ORCID,Brandstadter Stephan M.2,Bruce Robert L.3ORCID,Chang Jane P.4ORCID,DeMott Jessica C.2ORCID,Donnelly Vincent M.5ORCID,Dussart Rémi6ORCID,Fischer Andreas7ORCID,Gottscho Richard A.8ORCID,Hamaguchi Satoshi9ORCID,Honda Masanobu10ORCID,Hori Masaru11ORCID,Ishikawa Kenji11ORCID,Jaloviar Steven G.12,Kanarik Keren J.8ORCID,Karahashi Kazuhiro9ORCID,Ko Akiteru13ORCID,Kothari Hiten12,Kuboi Nobuyuki14ORCID,Kushner Mark J.15ORCID,Lill Thorsten7ORCID,Luan Pingshan13ORCID,Mesbah Ali16ORCID,Miller Eric17,Nath Shoubhanik16ORCID,Ohya Yoshinobu10ORCID,Omura Mitsuhiro18ORCID,Park Chanhoon19ORCID,Poulose John20ORCID,Rauf Shahid20ORCID,Sekine Makoto11ORCID,Smith Taylor G.4ORCID,Stafford Nathan21ORCID,Standaert Theo17ORCID,Ventzek Peter L. G.22

Affiliation:

1. Department of Material Science and Engineering, and Institute for Research in Electronics and Applied Physics, University of Maryland 1 , College Park, Maryland 20742

2. Arkema 2 , King of Prussia, Pennsylvania 19406

3. IBM Research Division, IBM T.J. Watson Research Center 3 , Yorktown Heights, New York 10598

4. Department of Chemical and Biomolecular Engineering, University of California, Los Angeles 4 , Los Angeles, California 90095

5. University of Houston 5 William A. Brookshire Department of Chemical and Biomolecular Engineering, , Houston, Texas 77204-4004

6. GREMI, CNRS/Université d’Orléans 6 , 45067 Orléans Cedex 2, France

7. Clarycon Nanotechnology Research 7 , Kalaheo, Hawaii 96741

8. Lam Research Corporation 8 , 4650 Cushing Pkwy, Fremont, California 94538

9. Graduate School of Engineering, Division of Materials and Manufacturing Science, Osaka University 9 , 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

10. Tokyo Electron Miyagi Ltd. 10 , 1 Techno-Hills, Taiwa-cho, Kurokawa-gun, Miyagi 981-3629, Japan

11. Center for Low-Temperature Plasma Sciences, Nagoya University 11 , Nagoya 464-8601, Japan

12. Logic Technology Development, Intel Corporation 12 , 2501 NE Century Blvd, Hillsboro, Oregon 97124

13. TEL Technology Center, America, LLC 13 , 255 Fuller Road, Albany, New York 12203

14. Research Division 2, Sony Semiconductor Solutions Corporation 14 , 4-14-1 Asahi-cho, Atsugi, Kanagawa 243-0014, Japan

15. Department of Electrical Engineering and Computer Science, University of Michigan 15 , Ann Arbor, Michigan 48109-2122

16. Department of Chemical and Biomolecular Engineering, University of California 16 , Berkeley, California 94720

17. IBM Semiconductors 17 , 257 Fuller Rd, Albany, New York 12203

18. Advanced Memory Development Center, Kioxia Corporation 18 , 800, Yamanoisshiki-cho, Yokkaichi, Mie 512-8550, Japan

19. Samsung Electronics Semiconductor R&D Center 19 , Gyeonggi-Do 18448, South Korea

20. Applied Materials Inc. 20 , 974 E. Arques Ave., Sunnyvale, California 94085

21. Delaware Research and Technology Center, American Air Liquide 21 , 200 GBC Dr., Newark, Delaware 19702

22. Tokyo Electron America, Inc. 22 , 2400 Grove Blvd, Austin, Texas 78741

Abstract

Plasma etching is an essential semiconductor manufacturing technology required to enable the current microelectronics industry. Along with lithographic patterning, thin-film formation methods, and others, plasma etching has dynamically evolved to meet the exponentially growing demands of the microelectronics industry that enables modern society. At this time, plasma etching faces a period of unprecedented changes owing to numerous factors, including aggressive transition to three-dimensional (3D) device architectures, process precision approaching atomic-scale critical dimensions, introduction of new materials, fundamental silicon device limits, and parallel evolution of post-CMOS approaches. The vast growth of the microelectronics industry has emphasized its role in addressing major societal challenges, including questions on the sustainability of the associated energy use, semiconductor manufacturing related emissions of greenhouse gases, and others. The goal of this article is to help both define the challenges for plasma etching and point out effective plasma etching technology options that may play essential roles in defining microelectronics manufacturing in the future. The challenges are accompanied by significant new opportunities, including integrating experiments with various computational approaches such as machine learning/artificial intelligence and progress in computational approaches, including the realization of digital twins of physical etch chambers through hybrid/coupled models. These prospects can enable innovative solutions to problems that were not available during the past 50 years of plasma etch development in the microelectronics industry. To elaborate on these perspectives, the present article brings together the views of various experts on the different topics that will shape plasma etching for microelectronics manufacturing of the future.

Funder

National Science Foundation

U.S. Department of Energy

Publisher

American Vacuum Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3