Diet Optimization for Sustainability: INDIGOO, an Innovative Multilevel Model Combining Individual and Population Objectives

Author:

Rocabois Audrey,Tompa Orsolya,Vieux FlorentORCID,Maillot MatthieuORCID,Gazan RozennORCID

Abstract

Diet optimization is a powerful approach for identifying more sustainable diets that simultaneously consider nutritional, economic, cultural, and environmental dimensions. This study aimed to develop an innovative multilevel approach called Individual Diet Including Global Objectives Optimization (INDIGOO) for designing diets that fulfill nutritional requirements and minimize dietary habit shifts at the individual level while attaining environmental impact reduction targets at the population level. For each individual in a representative sample from the French adult population (INCA2 survey 2006–2007; n = 1918), isocaloric and nutritionally adequate optimized diets with minimal shifts from the observed diet were designed. Environmental targets (including a 30% greenhouse gas emissions (GHGEs) reduction) were applied either similarly for each individual (original approach) or at the population level (INDIGOO). Compared with the original approach, INDIGOO enabled smaller dietary changes while distributing the contribution to the overall 30% GHGEs reduction more fairly among individuals (contributions ranging from −69.5% to +64%). For 6.4% of individuals, INDIGOO allowed an increase in GHGEs (+11% on average). Conversely, individuals with the greatest decrease in GHGEs (−45% on average) were characterized by high energy intake and high animal-based products, water, and other beverage consumption. INDIGOO is a promising multilevel approach to support food policy development.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference49 articles.

1. Environmental Impact of Products (EIPRO) Analysis of the Life Cycle Environmental Impacts Related to the Final Consumption of the EU-25: Main Report: IPTS/ESTO Project,2007

2. Sustainable Diets and Biodiversity: Directions and Solutions for Policy, Research and Action;Proceedings of the The International Scientific Symposium on Biodiversity and Sustainable Diets: United Against Hunger,2010

3. Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)?

4. Advantages and limitations of the methodological approaches used to study dietary shifts towards improved nutrition and sustainability

5. Mathematical Optimization to Explore Tomorrow's Sustainable Diets: A Narrative Review

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3