Antimicrobial Effect of Ocimum gratissimum L. Essential Oil on Shewanella putrefaciens: Insights Based on the Cell Membrane and External Structure

Author:

Xie Yao1,Zhang Chi1,Mei Jun1234ORCID,Xie Jing1234ORCID

Affiliation:

1. College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China

2. Key Laboratory of Aquatic Products High Quality Utilization, Storage and Transportation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China

3. National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China

4. Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China

Abstract

The main objective of this study was to assess the in vitro antibacterial effectiveness of Ocimum gratissimum L. essential oil (OGEO) against Shewanella putrefaciens. The minimum inhibitory concentration and minimum bactericidal concentration of OGEO acting on S. putrefaciens were both 0.1% and OGEO could inhibit the growth of S. putrefaciens in a dose-dependent manner. The restraint of the biofilm growth of S. putrefaciens was found in the crystal violet attachment assay and confocal laser scanning microscopy. The disruption of cell membranes and exudation of contents in S. putrefaciens with OGEO treatment were observed by scanning electron microscopy, hemolysis and ATPase activity. The results demonstrated that OGEO had a positive inhibitory effect on the growth of S. putrefaciens, which primarily developed its antibacterial function against S. putrefaciens by disrupting the formation of biofilms and cell membranes. This study could provide a new method of inhibiting the spoilage of food in which the dominant spoilage bacteria are S. putrefaciens.

Funder

National Natural Science Foundation of China

Shanghai Municipal Science and technology project to enhance the capabilities of the platform

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3