Time-Optimal Asymmetric S-Curve Trajectory Planning of Redundant Manipulators under Kinematic Constraints

Author:

Liu Tianyu12,Cui Jingkai12,Li Yanhui1,Gao Siyuan1,Zhu Mingchao1,Chen Liheng1

Affiliation:

1. CAS Key Laboratory of On-Orbit Manufacturing and Integration for Space Optics System, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

2. School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

This paper proposes a novel trajectory planning algorithm to design an end-effector motion profile along a specified path. An optimization model based on the whale optimization algorithm (WOA) is established for time-optimal asymmetrical S-curve velocity scheduling. Trajectories designed by end-effector limits may violate kinematic constraints due to the non-linear relationship between the operation and joint space of redundant manipulators. A constraints conversion approach is proposed to update end-effector limits. The path can be divided into segments at the minimum of the updated limitations. On each path segment, the jerk-limited S-shaped velocity profile is generated within the updated limitations. The proposed method aims to generate end-effector trajectory by kinematic constraints which are imposed on joints, resulting in efficient robot motion performance. The WOA-based asymmetrical S-curve velocity scheduling algorithm can be automatically adjusted for different path lengths and start/end velocities, allowing flexibility in finding the time-optimal solution under complex constraints. Simulations and experiments on a redundant manipulator prove the effect and superiority of the proposed method.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design Procedure for Motion Profiles with Sinusoidal Jerk for Vibration Reduction;Applied Sciences;2023-12-17

2. Modular robotic manipulator and ground assembly system for on-orbit assembly of space telescopes;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2023-08-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3