Impact of a Periodic Power Source on a RES Microgrid

Author:

Angelopoulos Angelos,Ktena AphroditeORCID,Manasis ChristosORCID,Voliotis Stamatis

Abstract

The aim of this article is to highlight the impact of a periodic power source, such as a tidal turbine, on the operation and sizing of an autonomous hybrid microgrid with photovoltaic panels and storage. The technique of hill climbing (repeated local search) is used to find the optimum combination of Renewable Energy Sources (RES) and storage units with respect to the required capital cost for various load curves and weather conditions. To model the operation of the microgrid devices, analytical and phenomenological models, have been used, which take into account the specifications of actual commercial devices. Six different case studies are presented, with and without a tidal generator, which are based on six different sets of electrical consumption data corresponding to the Euripus campus of the National & Kapodistrian University of Athens (NKUA) in Psachna, Evia, Greece, and respective meteorological and tidal current data from the region. The results show that tidal energy may be used in a RES microgrid, where applicable, to satisfy the base load requirements, leading to a reduction in installed capacities of intermittent RES and storage, accompanied with cost reduction, especially in cases where a high load factor is observed or may be achieved, through demand response mechanisms. Such a hybrid microgrid configuration may be appropriate for regions where low velocity tidal and marine currents exist along with substantial solar and/or wind energy potential, such as the Mediterranean coast line and islands.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3