Interaction of a House’s Rooftop PV System with an Electric Vehicle’s Battery Storage and Air Source Heat Pump

Author:

Stamatellos GeorgeORCID,Zogou OlympiaORCID,Stamatelos AnastassiosORCID

Abstract

Understanding the implications of introducing increasing shares of low-carbon technologies such as heat pumps and electric vehicles on the electricity network demand patterns is essential in today’s fast changing energy mixture. Application of heat pumps for heating and cooling, combined with the rooftop installation of photovoltaic panels, is already considered as a convenient retrofitting strategy towards building electrification. This may further profit from the parallel, rapid electrification of the automotive powertrain, as demonstrated in the present study. Exploitation of the combined battery storage of the house owners’ electric car(s) may help cover, to a significant degree, the building’s and cars’ electricity needs. To this end, an efficient single family house’s energy system with an optimized rooftop PV installation, heat pump heating and cooling, and two high efficiency electric cars is studied by transient simulation. The use of TRNSYS simulation environment makes clear the interaction of the house’s heating, ventilation, and air conditioning (HVAC) system, the house’s and cars’ batteries, and the rooftop PV system in transient operation. The building’s and EV’s energy performance on a daily, monthly, and seasonal level is compared with the respective demand curves and energy sources of the Greek electricity network. The specific design of the house’s energy system makes it a net exporter of electricity to the grid, to an annual amount of 5000 kWh. On the other hand, electricity imports are slightly exceeding 400 kWh and limited to the first two months of the year. In addition to the self-sufficiency of the household, the impact to the electricity grid becomes favorable due to the phase shift of the electricity export towards the late afternoon hours, thus assisting the evening ramp-up and adding to the grid’s stability and resilience. Based on the results of this study, the possibility of combining the financial incentives for the purchase of an EV with those for the installation of rooftop PV in the owners’ house is very promising and worth considering, due to the demonstrated synergy of electrical storage with the rooftop photovoltaic installations.

Publisher

MDPI AG

Reference57 articles.

1. New Registrations of Electric Vehicles in Europe,2021

2. The European Green Deal,2019

3. Regulation (EU) 2019/631 of the European Parliament and of the Council, Setting CO2 Emission Performance Standards for New Passenger Cars and for New Light Commercial Vehicles,2019

4. Climate Action: Transport Emissions—A European Strategy for Low-Emission Mobility,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3