Energy Performance Optimization of a House with Grid-Connected Rooftop PV Installation and Air Source Heat Pump

Author:

Stamatellos George,Zogou OlympiaORCID,Stamatelos AnastassiosORCID

Abstract

The use of air source heat pump systems for space heating and cooling is a convenient retrofitting strategy for reducing building energy costs. This can be combined with the rooftop installation of photovoltaic panels, which can cover, to a significant degree—or even significantly exceed the building’s electricity needs, moving towards the zero energy building concept. Alternatively, increased capacity for rooftop photovoltaic (PV) installation may support the ongoing process of transforming the Greek power system away from the reliance on fossil fuels to potentially become one of the leaders of the energy transition in Europe by 2030. Standard building energy simulation tools allow good assessment of the Heating, Ventilation and Air Conditioning (HVAC) and PV systems’ interactions in transient operation. Further, their use enables the rational sizing and selection of the type of panels type for the rooftop PV installation to maximize the return on investment. The annual performance of a three-zone residential building in Volos, Greece, with an air-to-water heat pump HVAC system and a rooftop PV installation, are simulated in a TRNSYS environment. The simulation results are employed to assess the expected building energy performance with a high performance, inverter driven heat pump with scroll compressor and high efficiency rooftop PV panels. Further, the objective functions are developed for the optimization of the installed PV panels’ area and tilt angle, based on alternative electricity pricing and subsidies. The methodology presented can be adapted to optimize system design parameters for variable electricity tariffs and improve net metering policies.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference72 articles.

1. Progress by Member States towards Nearly Zero-Energy Buildings. COM(2013) 483 final/2,2013

2. Commission Recommendation (EU) 2016/1318 on Guidelines for the Promotion of nearly Zero-Energy Buildings and Best Practices to Ensure that, by 2020, all New Buildings are nearly Zero-Energy Buildings,2016

3. Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings. Amended by: Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 and Regulation (EU) 2018/1999 of the European Parliament and of the Council of 11 December 2018,2018

4. Overview of national applications of the Nearly ZeroEnergy Building (NZEB) Definition. Detailed Report;Erhorn,2015

5. Comprehensive study of building energy renovation activities and the uptake of nearly zero-energy buildings in the EU,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3