Abstract
Near zero energy buildings are increasing worldwide, exploiting low-carbon technologies in heating and electricity self-production. Commercial buildings are increasingly considered as candidates for the installation of smart micro-grids, which may profit from the added storage capacity of the batteries of employees electric vehicles, stationed during daytime in their charging lots. Smart exploitation of the interaction of these electricity sources and sinks may prove essential to address the complex electricity network demand patterns in today’s fast changing energy mixture. The interaction of an efficient office building’s energy system with a big rooftop photovoltaic installation and the aggregate storage capacity of 40 electric cars that are connected in the building’s charging lots is studied by means of transient simulation in TRNSYS environment. The 18-zone building’s heating, ventilation, and air conditioning system, the cars’ batteries, and photovoltaic systems’ interactions are analyzed on a monthly, seasonal, and hourly basis, against the respective demand curves of the Greek network. The results suggest that the specific system’s size may profitably support the operation of a smart micro-grid. The total annual electricity consumption of the building is computed to reach 112,000 kWh, or 20 kWh/m2y. The annual electricity needs of the 40 electric cars, amounting to 101,000 kWh, can be fully met with 30% of the photovoltaic electricity production. Thus, the building becomes a net exporter of electricity to the network, with maximum exported electricity occurring daily between 12:00 and 14:00, which is favorable to meeting the demand curve. Thus, the establishment of smart micro-grids in commercial buildings with large rooftop photovoltaic panels’ capacity and a significant number of electric cars in the employees’ car fleet is quite effective in this direction.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Reference45 articles.
1. GOV.UK. Pm to Announce Electric Vehicle Revolution,2021
2. How much charging infrastructure do electric vehicles need?
A review of the evidence and international comparison
3. Quantifying the Electric Vehicle Charging Infrastructure Gap in the United Kingdom;Nicholas,2020
4. Regulation of Grid-efficient Charging from the User's Perspective
5. The Potential Impact of Electric Vehicles on Global Energy Systems;Engel,2018