Affiliation:
1. Department of Mechanical Engineering, University of Thessaly, 38221 Volos, Greece
Abstract
The establishment of near-autonomous micro-grids in commercial or public building complexes is gaining increasing popularity. Short-term storage capacity is provided by means of large battery installations, or, more often, by the employees’ increasing use of electric vehicle batteries, which are allowed to operate in bi-directional charging mode. In addition to the above short-term storage means, a long-term storage medium is considered essential to the optimal operation of the building’s micro-grid. The most promising long-term energy storage carrier is hydrogen, which is produced by standard electrolyzer units by exploiting the surplus electricity produced by photovoltaic installation, due to the seasonal or weekly variation in a building’s electricity consumption. To this end, a novel concept is studied in this paper. The details of the proposed concept are described in the context of a nearly Zero Energy Building (nZEB) and the associated micro-grid. The hydrogen produced is stored in a high-pressure tank to be used occasionally as fuel in an advanced technology hydrogen spark ignition engine, which moves a synchronous generator. A size optimization study is carried out to determine the genset’s rating, the electrolyzer units’ capacity and the tilt angle of the rooftop’s photovoltaic panels, which minimize the building’s interaction with the external grid. The hydrogen-fueled genset engine is optimally sized to 40 kW (0.18 kW/kWp PV). The optimal tilt angle of the rooftop PV panels is 39°. The maximum capacity of the electrolyzer units is optimized to 72 kW (0.33 kWmax/kWp PV). The resulting system is tacitly assumed to integrate to an external hydrogen network to make up for the expected mismatches between hydrogen production and consumption. The significance of technology in addressing the current challenges in the field of energy storage and micro-grid optimization is discussed, with an emphasis on its potential benefits. Moreover, areas for further research are highlighted, aiming to further advance sustainable energy solutions.
Reference55 articles.
1. A systematic review towards integrative energy management of smart grids and urban energy systems;Zheng;Renew. Sustain. Energy Rev.,2024
2. Renewable energy design and optimization for a net-zero energy building integrating electric vehicles and battery storage considering grid flexibility;Liu;Energy Convers. Manag.,2023
3. European_Commission (2024, March 10). Nearly Zero-Energy Buildings. Available online: https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficient-buildings/nearly-zero-energy-buildings_en.
4. Commission of the European Communities (2016). COMMISSION RECOMMENDATION (EU) 2016/1318 of 29 July 2016 on Guidelines for the Promotion of Nearly Zero-Energy Buildings and Best Practices to Ensure that, by 2020, All New Buildings Are Nearly Zero-Energy Buildings, Official Journal of the European Union.
5. Hybrid inorganic-organic proton-conducting membranes based on SPEEK doped with WO3 nanoparticles for application in vanadium redox flow batteries;Sun;Electrochim. Acta,2019
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献