Power Generation Prediction of an Open Cycle Gas Turbine Using Kalman Filter

Author:

Manasis ChristosORCID,Assimakis Nicholas,Vikias Vasilis,Ktena AphroditeORCID,Stamatelos TassosORCID

Abstract

The motivation for this paper is the enhanced role of power generation prediction in power plants and power systems in the smart grid paradigm. The proposed approach addresses the impact of the ambient temperature on the performance of an open cycle gas turbine when using the Kalman Filter (KF) technique and the power-temperature (P-T) characteristic of the turbine. Several Kalman Filtering techniques are tested to obtain improved temperature forecasts, which are then used to obtain output power predictions. A typical P-T curve of an open-cycle gas turbine is used to demonstrate the applicability of the proposed method. Nonlinear and linear discrete process models are studied. Extended Kalman Filters are proposed for the nonlinear model. The Time Varying, Time Invariant, and Steady State Kalman Filters are used with the linearized model. Simulation results show that the power generation prediction obtained using the Extended Kalman Filter with the piecewise linear model yields improved forecasts. The linear formulations, though less accurate, are a promising option when a power generation forecast for a small-term and short-term time window is required.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3