Abstract
The motivation for this paper is the enhanced role of power generation prediction in power plants and power systems in the smart grid paradigm. The proposed approach addresses the impact of the ambient temperature on the performance of an open cycle gas turbine when using the Kalman Filter (KF) technique and the power-temperature (P-T) characteristic of the turbine. Several Kalman Filtering techniques are tested to obtain improved temperature forecasts, which are then used to obtain output power predictions. A typical P-T curve of an open-cycle gas turbine is used to demonstrate the applicability of the proposed method. Nonlinear and linear discrete process models are studied. Extended Kalman Filters are proposed for the nonlinear model. The Time Varying, Time Invariant, and Steady State Kalman Filters are used with the linearized model. Simulation results show that the power generation prediction obtained using the Extended Kalman Filter with the piecewise linear model yields improved forecasts. The linear formulations, though less accurate, are a promising option when a power generation forecast for a small-term and short-term time window is required.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献