New Method of Degradation Process Identification for Reliability-Centered Maintenance of Energy Equipment

Author:

Zadiran KonstantinORCID,Shcherbakov MaximORCID

Abstract

Advancements in energy technologies created a new application for gas turbine generators, which are used to balance load. This usage also brought new challenges for maintenance because of harsh operating conditions that make turbines more susceptible to random failures. At the same time, reliability requirements for energy equipment are high. Reliability-centered maintenance based on forecasting the remaining useful life (RUL) of energy equipment, offers improvements to maintenance scheduling. It requires accurate forecasting methods to be effective. Defining stages in energy equipment operation allows for the improvement of quality of data used for training. At least two stages can be defined: normal operation and degradation process. A new method named Head move—Head move is proposed to robustly identify the degradation process by detecting its starting point. The method is based on two partially overlapping sliding windows moving from the start of operation to the end of life of the energy equipment and Kruskal-Wallis test to compare data within these windows. Using this data separation, a convolutional neural network-based forecasting model is applied for RUL prediction. The results demonstrate that the proposed degradation process identification (DPI) method doubles the accuracy when compared to the same forecasting model but without degradation process identification.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3