Globally Optimal Redundancy Resolution with Dynamic Programming for Robot Planning: A ROS Implementation

Author:

Ferrentino EnricoORCID,Salvioli FedericoORCID,Chiacchio PasqualeORCID

Abstract

Dynamic programming techniques have proven much more flexible than calculus of variations and other techniques in performing redundancy resolution through global optimization of performance indices. When the state and input spaces are discrete, and the time horizon is finite, they can easily accommodate generic constraints and objective functions and find Pareto-optimal sets. Several implementations have been proposed in previous works, but either they do not ensure the achievement of the globally optimal solution, or they have not been demonstrated on robots of practical relevance. In this communication, recent advances in dynamic programming redundancy resolution, so far only demonstrated on simple planar robots, are extended to be used with generic kinematic structures. This is done by expanding the Robot Operating System (ROS) and proposing a novel architecture meeting the requirements of maintainability, re-usability, modularity and flexibility that are usually required to robotic software libraries. The proposed ROS extension integrates seamlessly with the other software components of the ROS ecosystem, so as to encourage the reuse of the available visualization and analysis tools. The new architecture is demonstrated on a 7-DOF robot with a six-dimensional task, and topological analyses are carried out on both its state space and resulting joint-space solution.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

MDPI AG

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3