Supporting Students in Building and Using Models: Development on the Quality and Complexity Dimensions

Author:

Bielik Tom,Opitz Sebastian,Novak Ann

Abstract

Past research has identified elements underlying modeling as a core science and engineering practice, as well as dimensions along which students’ learn how to use models and how they perceive the nature of modeling. To extend these findings by a perspective on how modeling practice can be used in classrooms, we used design-based research to investigate how the modeling practice elements, i.e., construct, use, evaluate, and revise, were integrated in a middle school unit about water quality that included using an online modeling tool. We focus on N = 3 groups as cases to track and analyze 7th grade students’ modeling practice and metamodeling knowledge across the unit. Students constructed, used, evaluated, and revised their models based on data they collected and concepts they learned. Results indicate most students succeeded in constructing complex models using the modeling tool by consecutively adding and specifying variables and relationships. This is a positive finding compared to prior research on students’ metamodeling knowledge. Similar to these studies, we observed several basic metamodeling conceptions and generally less progress in this field than in students’ models. We discuss implications for applying modeling practice in classrooms and explain how students make use of the different modeling practice elements by developing their models in the complexity and quality dimensions.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Public Administration,Developmental and Educational Psychology,Education,Computer Science Applications,Computer Science (miscellaneous),Physical Therapy, Sports Therapy and Rehabilitation

Reference39 articles.

1. A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas,2012

2. Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners

3. Allgemeine Modelltheorie (General Model Theory);Stachowiak,1973

4. ‘Models of’ versus ‘Models for’

5. Cultivating model-based reasoning in science education;Lehrer,2005

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3