Abstract
Exploitation of plant proteins as an alternative to animal proteins currently presents an important challenge for food industries. In this contribution, total sunflower protein isolate from cold press meal was used as a starting material for the generation of highly soluble and functional hydrolysates that could be used in various food formulations. To do this, a rational and complete approach of controlled hydrolysis was implemented using the individual Alcalase and Prolyve enzymes. The method of stopping the hydrolysis reaction was also evaluated. The influence of operating conditions on hydrolysis kinetics and enzymatic mechanism was studied to identify the appropriate hydrolysis conditions. The gain of the solubility was then analyzed and compared to that of the initial proteins. Finally, the emulsifying and foaming properties (capacities and stabilities) of the resulting hydrolysates were also assessed. As a result, controlled enzymatic proteolysis significantly improved the sunflower protein solubility at neutral pH (twofold increase) and generated highly soluble hydrolysates. The limited proteolysis also maintained the good foam capacities and allowed an improvement in the initial foam stabilities and emulsifying capacities and stabilities of sunflower proteins. This contribution can greatly increase the value of sunflower meal and help in the development of sunflower protein products in the future.
Subject
Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献