Abstract
This work presents and discusses the design of an efficient gas sensor, as well as the technological process of its fabrication. The optimal dimensions of the different sensor elements including their deformation were determined considering the geometric modeling and the calculated moduli of the elasticity and thermal conductivity coefficients. Multicomponent SnxBikMoyOz thin films were prepared by ionic layering on an anodic alumina membrane and were used as gas-sensitive layers in the sensor design. The resistance of the SnxBikMoyOz nanostructured film at temperatures up to 150 °C exceeded 106 Ohm but decreased to 104 Ohm at 550 °C in air. The sensitivity of the SnxBikMoyOz composite to concentrations of 5 and 40 ppm H2 at 250 °C (10 mW) was determined to be 0.22 and 0.40, respectively.
Funder
The Belarusian Republican Foundation for Fundamental Research
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献