Gas-Sensitive Characteristics of Low-Power Semiconductor Gas Sensors to CO and H<sub>2</sub>

Author:

Taratyn I. A.1,Reutskaya O. G.1,Gorokh G. G.2,Serdyuk I. V.3,Fedosenko V. S.2

Affiliation:

1. Belarusian National Technical University; Minsk Research Institute of Radiomaterials

2. Belarusian State University of Informatics and Radioelectronics

3. “Avangard” JSC

Abstract

Strict requirements for determining of gases concentration in the working environment it is relevant to develop of semiconductor sensors which provide rapid response and safety of personnel in industrial and domestic premises. The aim of the work was to study gas-sensitive and dynamic characteristics of high-sensitive low-power sensors made on thin nanoporous substrates with gas-sensitive layers of semiconductor metal oxides. The low-power semiconductor gas sensor on the anodic alumina substrate has been developed. Sensors with gas-sensitive semiconductor metal oxide layers based on In2O3+Ga2O3, In2O3+SnO2 and SnO2+Pd deposited from aqueous solutions with subsequent firing on sensor information electrodes are manufactured. Studies of gas-sensitive characteristics have shown that sensors with SnO2 films with the addition of Pd nanoparticles have maximum sensitivity of about 85 % and high response rate to 10 ppm H2 at 410 °C. The maximum sensitivity of 250 % to 10 ppm CO at 220 °C was shown by films based on In2O3+SnO2, the response time τ90 was 5 s, while the sensitivity of In2O3+Ga2O3 and SnO2+Pd was 30–50 % at 410–420 ºC. Semiconducting metal oxides In2O3+Ga2O3 (70 % at 420 °C) and In2O3+SnO2 (30 % at 250 °C) showed lower sensitivity to hydrogen, with response time τ90 = 20 s. The sensors power consumption in all measurements was 28–60 mW. Semiconductor gas sensors with low energy consumption can be used in the systems development that monitor the carbon monoxide concentration in the work area, as well as detect ignition's early stages.

Publisher

Belarusian National Technical University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3