Heater Topology Influence on the Functional Characteristics of Thin-Film Gas Sensors Made by MEMS-Silicon Technology

Author:

Gorokh Gennady1ORCID,Taratyn Igor2,Fiadosenka Uladzimir1,Reutskaya Olga2,Lozovenko Andrei1

Affiliation:

1. R&D Laboratory of Nanotechnologies, Belarusian State University of Informatics and Radioelectronics, 220013 Minsk, Belarus

2. Instrumentation Engineering Faculty, Micro- and Nanotechnology Department, Belarusian National Technical University, 220013 Minsk, Belarus

Abstract

The design of the heater plays a decisive role in the energy consumption, sensitivity, and speed of chemical sensors. The paper analyzes various options for the topology of meander-type platinum heaters in chemical sensors fabricated on thin dielectric membranes using MEMS-silicon technology. Comprehensive studies of the heater’s current–voltage characteristics have been carried out, heating rates have been measured at various currents, experimental temperature characteristics for various meander topologies have been obtained, heater options have been determined, and optimal heat transfer processes are ensured at a low power consumption of about 20–25 mW. Sensors with an optimal heater topology based on a double dielectric membrane were fabricated according to the described technological process, and sensory responses to 0.5 vol.% CH4 and 0.2% C3H8 were studied. The obtained results showed good results and confirmed the need to choose the optimal heater topology when designing sensors for recording the given type of gas mixtures in a certain temperature range.

Funder

State Research Program of the Republic of Belarus, “Micro- and Nanoelectronics”

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3