The technosphere in Earth System analysis: A coevolutionary perspective

Author:

Donges Jonathan F12,Lucht Wolfgang13,Müller-Hansen Finn14,Steffen Will25

Affiliation:

1. Earth System Analysis, Potsdam Institute for Climate Impact Research, Germany

2. Stockholm Resilience Centre, Stockholm University, Sweden

3. Department of Geography, Humboldt University, Germany

4. Department of Physics, Humboldt University, Germany

5. The Australian National University, Australia

Abstract

Earth System analysis is the study of the joint dynamics of biogeophysical, social and technological processes on our planet. To advance our understanding of possible future development pathways and identify management options for navigating to safe operating spaces while avoiding undesirable domains, computer models of the Earth System are developed and applied. These models hardly represent dynamical properties of technological processes despite their great planetary-scale influence on the biogeophysical components of the Earth System and the associated risks for human societies posed, e.g. by climatic change or novel entities. In this contribution, we reflect on the technosphere from the perspective of Earth System analysis with a threefold focus on agency, networks and complex coevolutionary dynamics. First, we argue that Haff’s conception of the technosphere takes an extreme position in implying a strongly constrained human agency in the Earth System. Assuming that the technosphere develops according to dynamics largely independently of human intentions, Haff’s perspective appears incompatible with a humanistic view that underlies the sustainability discourse at large and, more specifically, current frameworks such as UN sustainable development goals and the safe and just operating space for humanity. Second, as an alternative to Haff’s static three-stratum picture, we propose complex adaptive networks as a concept for describing the interplay of social agents and technospheric entities and their emergent dynamics for Earth System analysis. Third, we argue that following a coevolutionary approach in conceptualising and modelling technospheric dynamics, also including the socio-cultural and biophysical spheres of the Earth System, could resolve the apparent conflict between the discourses on sustainability and the technosphere. Hence, this coevolutionary approach may point the way forward in modelling technological influences in the Earth System and may lead to a considerably deeper understanding of pathways to sustainable development in the future.

Funder

The Earth League

Deutsche Forschungsgemeinschaft

Stordalen Foundation

Publisher

SAGE Publications

Subject

Geology,Ecology,Global and Planetary Change

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3