Mg Doping of N-Polar, In-Rich InAlN

Author:

Kuzmík Ján1ORCID,Pohorelec Ondrej1ORCID,Hasenöhrl Stanislav1,Blaho Michal1,Stoklas Roman1,Dobročka Edmund1,Rosová Alica1ORCID,Kučera Michal1,Gucmann Filip1ORCID,Gregušová Dagmar1ORCID,Precner Marian1,Vincze Andrej2ORCID

Affiliation:

1. Institute of Electrical Engineering, Slovak Academy of Sciences, 831 04 Bratislava, Slovakia

2. International Laser Centre, Slovak Centre of Scientific and Technical Information, 811 04 Bratislava, Slovakia

Abstract

Metal organic chemical vapor deposition was used to grow N-polar In0.63Al0.37N on sapphire substrates. P-doping was provided by a precursor flow of Cp2Mg between 0 and 130 nmol/min, reaching a Cp2Mg/III ratio of 8.3 × 10−3. The grain structure of 360 nm thick InAlN was spoiled by pits after introducing a flow of CP2Mg at 30 nmol/min. The surface quality was improved with a flow of 80 nmol/min; however, detrimental deterioration appeared at 130 nmol/min. This correlated with the XRD shape and determined density of dislocations, indicating a phase separation at the highest flow. Degenerated n-type conduction and a free carrier concentration of ~1019 cm−3 were determined in all samples, with a minor compensation observed at a CP2Mg flow of 30 nmol/min. The room temperature (RT) electron mobility of ~40 cm2/Vs of the undoped sample was reduced to ~6 and ~0.3 cm2/Vs with a CP2Mg flow of 30 and 80 nmol/min, respectively. Scattering at ionized acceptor/donor Mg-related levels is suggested. RT photoluminescence showed a red shift of 0.22 eV from the virgin 1.73 eV peak value with Mg doping. Mobility degradation was found to be the main factor by InAlN resistivity determination, which increased by two orders of magnitude, approaching ~0.5 Ωcm, at the highest Cp2Mg flow.

Funder

Slovak Research and Development Agency

VEGA

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3