Effects of Different Freezing Methods on Water Distribution, Microstructure and Protein Properties of Cuttlefish during the Frozen Storage

Author:

Lv Ying,Chu Yuanming,Zhou Pengcheng,Mei JunORCID,Xie JingORCID

Abstract

To study the effect of different freezing methods on the quality changes of cuttlefish during the frozen storage of cuttlefish, fresh cuttlefish was treated with six freezing methods (refrigerator direct-freezing, saline solution impregnation freezing, flat freezing, tunnel type continuous freezing, air-blast freezing and liquid nitrogen freezing) and then stored at −18 °C for 90 days. The time to pass the maximum ice crystal generation zone for the above six freezing methods in this experiment was 165.5, 67.5, 34.5, 21.8, 20.4 and 1.5 min, respectively. In this study, water retention (thawing loss rate, centrifugal loss rate, and cooking loss), pH, malondialdehyde content, TVB-N value, and sulfhydryl content were measured to evaluate the quality after thawing. Protein secondary structure was measured by attenuated total reflection infrared spectroscopy (ATR-FTIR), water migration was determined by low-field NMR, and muscle microstructure was observed by scanning electron microscopy. The results showed that among the six freezing methods, liquid nitrogen freezing took the shortest time to pass through the maximum ice crystal generation zone. And it had the highest water retention, the lowest TVB-N content, the highest sulfhydryl content and the least irregular curling of protein secondary structure after 90 days of frozen storage. However, liquid nitrogen freezing can cause cracks and breakage in cuttlefish due to cryogenic fracture caused by ultra-low temperature, which affects its sensory evaluation. Although the freezing speed of flat freezing is faster than refrigerator direct-freezing and saline solution impregnation freezing, the muscle is extruded and deformed during the freezing process, and the damage is more serious, and the frozen storage quality is the worst. The comprehensive analysis results showed that the freezing speed of air- blast freezing was faster and the quality of cuttlefish in the freezing process was better, which was the more recommended freezing method, and this study provided some theoretical basis for the selection of freezing method in the actual production of cuttlefish.

Funder

The National Key R&D Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3