A Method for Obtaining the Number of Maize Seedlings Based on the Improved YOLOv4 Lightweight Neural Network

Author:

Gao Jiaxin,Tan Feng,Cui Jiapeng,Ma Bo

Abstract

Obtaining the number of plants is the key to evaluating the effect of maize mechanical sowing, and is also a reference for subsequent statistics on the number of missing seedlings. When the existing model is used for plant number detection, the recognition accuracy is low, the model parameters are large, and the single recognition area is small. This study proposes a method for detecting the number of maize seedlings based on an improved You Only Look Once version 4 (YOLOv4) lightweight neural network. First, the method uses the improved Ghostnet as the model feature extraction network, and successively introduces the attention mechanism and k-means clustering algorithm into the model, thereby improving the detection accuracy of the number of maize seedlings. Second, using depthwise separable convolutions instead of ordinary convolutions makes the network more lightweight. Finally, the multi-scale feature fusion network structure is improved to further reduce the total number of model parameters, pre-training with transfer learning to obtain the optimal model for prediction on the test set. The experimental results show that the harmonic mean, recall rate, average precision and accuracy rate of the model on all test sets are 0.95%, 94.02%, 97.03% and 96.25%, respectively, the model network parameters are 18.793 M, the model size is 71.690 MB, and frames per second (FPS) is 22.92. The research results show that the model has high recognition accuracy, fast recognition speed, and low model complexity, which can provide technical support for corn management at the seedling stage.

Funder

the Natural Science Fund Key Project of Heilongjiang Province

Heilongjiang Bayi Agricultural University

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3