An Ensemble Learning Model for Detecting Soybean Seedling Emergence in UAV Imagery

Author:

Zhang Bo1,Zhao Dehao1

Affiliation:

1. College of Information and Electrical Engineering, Heilongjiang Bayi Agricultural University, Daqing 163319, China

Abstract

Efficient detection and evaluation of soybean seedling emergence is an important measure for making field management decisions. However, there are many indicators related to emergence, and using multiple models to detect them separately makes data processing too slow to aid timely field management. In this study, we aimed to integrate several deep learning and image processing methods to build a model to evaluate multiple soybean seedling emergence information. An unmanned aerial vehicle (UAV) was used to acquire soybean seedling RGB images at emergence (VE), cotyledon (VC), and first node (V1) stages. The number of soybean seedlings that emerged was obtained by the seedling emergence detection module, and image datasets were constructed using the seedling automatic cutting module. The improved AlexNet was used as the backbone network of the growth stage discrimination module. The above modules were combined to calculate the emergence proportion in each stage and determine soybean seedlings emergence uniformity. The results show that the seedling emergence detection module was able to identify the number of soybean seedlings with an average accuracy of 99.92%, a R2 of 0.9784, a RMSE of 6.07, and a MAE of 5.60. The improved AlexNet was more lightweight, training time was reduced, the average accuracy was 99.07%, and the average loss was 0.0355. The model was validated in the field, and the error between predicted and real emergence proportions was up to 0.0775 and down to 0.0060. It provides an effective ensemble learning model for the detection and evaluation of soybean seedling emergence, which can provide a theoretical basis for making decisions on soybean field management and precision operations and has the potential to evaluate other crops emergence information.

Funder

Youth talent Program

China Agriculture Research System of MOF and MARA

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference45 articles.

1. State-of-the-art and recommended developmental strategic objectives of smart agriculture;Zhao;Smart Agric.,2019

2. Current status and future perspective of the application of deep learning in plant phenotype research;Cen;Trans. Chin. Soc. Agric. Eng.,2020

3. Image analysis in plant sciences: Publish then perish;Lobet;Trends Plant Sci.,2017

4. Research progress of image sensing and deep learning in agriculture;Sun;Trans. Chin. Soc. Agric. Mach.,2020

5. A review of unmanned aerial vehicle-based methods for plant stand count evaluation in row crops;Pathak;Comput. Electron. Agric.,2022

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3