Seed Size, Planting Depth, and a Perennial Groundcover System Effect on Corn Emergence and Grain Yield

Author:

Kimmelshue Chad L.,Goggi SusanaORCID,Moore Kenneth J.ORCID

Abstract

The intensive corn (Zea mays L.) and soybean (Glycine max (L.) Merr.) production practices currently used in the Midwestern U.S. concern producers and stakeholders. The negative impact of these two-crop rotations on the environment affects water quality and soil erosion and increases flooding risks. Due to these concerns, cover crops and, specifically, perennial groundcover (PGC) cropping systems have gained greater interest. These perennial species have growing patterns compatible with corn and soybean, and can help rebuild the ecosystem while maintaining good cash crop yields. In addition, producers also are interested in the possible effect of seed size and planting depth on uneven emergence in corn. The successful adoption of PGC systems ultimately depends on the successful corn seedling emergence and consistent yield. The objective of the study was to understand the effects of seed characteristics and placement on emergence, grain yield, and grain quality in corn planted using a Kentucky bluegrass (Poa pratensis L.) (KBG)-PGC and a bare-soil cropping system and to determine grain quality attributes and grain moisture dry-down in a PGC field when compared to a conventional cropping system. Commercially-sized seed and seed sized in the laboratory to represent a narrower seed size distribution were planted in KBG-PGC and bare soil systems at two planting depths (3.18 and 6.35 cm). The two-year experiments were planted in a split-plot RCB design with four replications. Individual plants were flagged at emergence, and ears from each plant were harvested individually. Separating the seed lot into different size distributions did not affect seed germination under ideal (standard germination and speed of germination tests) or stressful (cold test) conditions. Seed size distribution also did not influence emergence rate and yield in a conventional tillage (bare soils) or KBG-PGC system. These results indicate that seed sizing specifications and seed size cutoffs currently used by seed companies are suitable for uniform emergence and maximum grain yield in both cropping systems. Seed placement was crucial to uniform emergence in both cropping systems, while seed size distribution did not play a role in emergence for either system. The PGC cropping system delayed seed corn emergence and reduced grain yields as much as 50%. This information is important for those producers considering adopting a PGC system because it demonstrates that uniform planting depth is more important than seed size distribution.

Funder

National Institute of Food and Agriculture.

Iowa State University

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference54 articles.

1. Cover Crop Acres Increase but Rate of Growth Declines in 2018. Iowa State Universtiy Extension https://www.extension.iastate.edu/news/cover-crop-acres-increase-rate-growth-declines-2018

2. Opportunites to Improve your bottom line in Row Crops;Myers;SARE Ag. Innov. Ser. Bull.,2019

3. Abundance and activity of soil organisms in fields of maize grown with a white clover living mulch

4. Cyanazine Losses in Runoff from No-Tillage Corn in “Living” and Dead Mulches vs. Unmulched, Conventional Tillage

5. Cover crops and living mulches

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3