Lightweight Corn Leaf Detection and Counting Using Improved YOLOv8

Author:

Ning Shaotong1,Tan Feng1,Chen Xue1,Li Xiaohui1,Shi Hang2,Qiu Jinkai2

Affiliation:

1. College of Information and Electrical Engineering, Heilongjiang Bayi Agricultural University, Daqing 163319, China

2. College of Engineering, Heilongjiang Bayi Agricultural University, Daqing 163319, China

Abstract

The number of maize leaves is an important indicator for assessing plant growth and regulating population structure. However, the traditional leaf counting method mainly relies on manual work, which is both time-consuming and straining, while the existing image processing methods have low accuracy and poor adaptability, making it difficult to meet the standards for practical application. To accurately detect the growth status of maize, an improved lightweight YOLOv8 maize leaf detection and counting method was proposed in this study. Firstly, the backbone of the YOLOv8 network is replaced using the StarNet network and the convolution and attention fusion module (CAFM) is introduced, which combines the local convolution and global attention mechanisms to enhance the ability of feature representation and fusion of information from different channels. Secondly, in the neck network part, the StarBlock module is used to improve the C2f module to capture more complex features while preserving the original feature information through jump connections to improve training stability and performance. Finally, a lightweight shared convolutional detection head (LSCD) is used to reduce repetitive computations and improve computational efficiency. The experimental results show that the precision, recall, and mAP50 of the improved model are 97.9%, 95.5%, and 97.5%, and the numbers of model parameters and model size are 1.8 M and 3.8 MB, which are reduced by 40.86% and 39.68% compared to YOLOv8. This study shows that the model improves the accuracy of maize leaf detection, assists breeders in making scientific decisions, provides a reference for the deployment and application of maize leaf number mobile end detection devices, and provides technical support for the high-quality assessment of maize growth.

Funder

National key research and development plan project

Heilongjiang Key R&D Program Guidance Project

Heilongjiang Natural Science Foundation Project

Heilongjiang Bayi Agricultural University Natural Science Talents Support Program

Heilongjiang Higher Education Teaching Reform Research Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3