Prototype Network for Predicting Occluded Picking Position Based on Lychee Phenotypic Features

Author:

Li Yuanhong123ORCID,Liao Jiapeng1,Wang Jing1,Luo Yangfan1ORCID,Lan Yubin123

Affiliation:

1. College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University, Guangzhou 510642, China

2. Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China

3. National Center for International Collaboration Research on Precision Agricultural Aviation Pesticides Spraying Technology (NPAAC), South China Agricultural University, Guangzhou 510642, China

Abstract

The automated harvesting of clustered fruits relies on fast and accurate visual perception. However, the obscured stem diameters via leaf occlusion lack any discernible texture patterns. Nevertheless, our human visual system can often judge the position of harvesting points. Inspired by this, the aim of this paper is to address this issue by leveraging the morphology and the distribution of fruit contour gradient directions. Firstly, this paper proposes the calculation of fruit normal vectors using edge computation and gradient direction distribution. The research results demonstrate a significant mathematical relationship between the contour edge gradient and its inclination angle, but the experiments show that the standard error projected onto the Y-axis is smaller, which is evidently more conducive to distinguishing the gradient distribution. Secondly, for the front view of occluded lychee clusters, a fully convolutional, feature prototype-based one-stage instance segmentation network is proposed, named the lychee picking point prediction network (LP3Net). This network can achieve high accuracy and real-time instance segmentation, as well as for occluded and overlapping fruits. Finally, the experimental results show that the LP3Net based on this study, along with lychee phenotypic features, achieves an average location accuracy reaching 82%, significantly improving the precision of harvesting point localization for lychee clusters.

Funder

Laboratory of Lingnan Modern Agriculture Project

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Key-Area Research and Development Program of Guangdong Province

China Postdoctoral Science Foundation

China Agriculture Research System

Open Competition Program of the Top Ten Critical Priorities of Agricultural Science and Technology Innovation for the 14th Five-Year Plan of Guangdong Province

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3