High-Power Ultrasound in Enology: Is the Outcome of This Technique Dependent on Grape Variety?

Author:

Pérez-Porras Paula1,Gómez Plaza Encarna1ORCID,Martínez-Lapuente Leticia2ORCID,Ayestarán Belén2ORCID,Guadalupe Zenaida2ORCID,Jurado Ricardo3,Bautista-Ortín Ana Belén1

Affiliation:

1. Department of Food Science and Technology, Faculty of Veterinary Science, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain

2. Institute of Vine and Wine Sciences, ICVV (University of La Rioja, Government of La Rioja and CSIC), Finca La Grajera, 26007 Logroño, Spain

3. Agrovin S.A., Av. de los Vinos, s/n, Alcázar de San Juan, 13600 Ciudad Real, Spain

Abstract

The disruptive effect exerted by high-power ultrasound (US) on grape cell walls is established as the reason behind the chromatic, aromatic and mouthfeel improvement that this treatment causes in red wines. Given the biochemical differences that exist between the cell walls of different grape varieties, this paper investigates whether the effect of the application of US in a winery may vary according to the grape variety treated. Wines were elaborated with Monastrell, Syrah and Cabernet Sauvignon grapes, applying a sonication treatment to the crushed grapes using industrial-scale equipment. The results showed a clear varietal effect. The wines made with sonicated Syrah and Cabernet Sauvignon grapes showed an important increase in the values of color intensity and concentration of phenolic compounds, and these increases were higher than those observed when sonication was applied to Monastrell crushed grapes, whereas Monastrell wines presented the highest concentration in different families of polysaccharides. These findings correlate with the differences in the composition and structure of their cell walls since those of Monastrell grapes presented biochemical characteristics associated with a greater rigidity and firmness of the structures.

Funder

Ministerio de Ciencia, Innovación y Universidades from the Spanish Government and Feder Funds

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3