The Generation of Suspended Cell Wall Material May Limit the Effect of Ultrasound Technology in Some Varietal Wines

Author:

Pérez-Porras Paula1,Bautista-Ortín Ana Belén1,Martínez-Lapuente Leticia2ORCID,Guadalupe Zenaida2ORCID,Ayestarán Belén2ORCID,Gómez-Plaza Encarna1

Affiliation:

1. Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30071 Murcia, Spain

2. Institute of Vine and Wine Sciences, ICVV (University of La Rioja, Government of La Rioja and CSIC), Finca La Grajera, 26071 Logroño, Spain

Abstract

The disruptive effect exerted by high-power ultrasound on grape cell walls enhances phenolic extraction, improving chromatic characteristics during red wine maceration. However, short maceration times may, sometimes, hinder this enhancement, and this effect could be attributed to the suspended cell wall material formation facilitated by sonication. This suspended material, having a strong affinity for phenolic compounds, can lead to their precipitation and elimination during subsequent vinification stages and, consequently, a significant portion of extracted phenolic compounds may not contribute to the final phenolic composition of the wine, impacting its chromatic features. To demonstrate this effect, sonicated grapes of two different varieties were vinified with No modified process that eliminated part of this suspended material. Results confirm our hypothesis; that is, the lack of positive outcomes in some cases is due to phenolic compound adsorption on suspended material.

Funder

Ministerio de Ciencia, Innovación y Universidades

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3