Untargeted Metabolomics Analysis Based on LC-QTOF-MS to Investigate the Phenolic Composition of Red and White Wines Elaborated from Sonicated Grapes

Author:

Martínez-Moreno Alejandro1ORCID,Pérez-Porras Paula1,Bautista-Ortín Ana Belén1,Gómez-Plaza Encarna1ORCID,Vallejo Fernando2ORCID

Affiliation:

1. Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain

2. Metabolomic Platform, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, 30100 Murcia, Spain

Abstract

Ultrasounds are considered an emerging technology in the wine industry. Concretely, in 2019, the International Organization of Vine and Wine (OIV) officially approved their use for the treatment of crushed grapes to increase the level of phenolic compound extraction. The main objective of this study was to validate an untargeted metabolomics approach as an analytical tool for identifying novel markers associated with sonication. To do so, the influence of a sonication treatment on the metabolic profile was studied in four typically commercial varietal wines, i.e., two red wines from ‘Syrah’ and ‘Cabernet Sauvignon’ grapes and two white wines from ‘Macabeo’ and ‘Airén’ grapes. A robust classification and prediction model was created employing supervised techniques such as partial least-squares discriminant analysis (PLS-DA). The findings indicated that the grapes subjected to high-power ultrasound conditions experienced cell wall disruption due to the cavitation phenomenon, resulting in significant changes in various phenolic compounds (including hydroxycinnamic acids and flavonoids) present in these wines compared to wines from non-sonicated grapes. Additionally, new metabolites were tentatively identified through untargeted metabolomics techniques. This study represents the successful application of the untargeted metabolomics approach employing a UHPLC-QTOF system to discern how grape sonication affects bioactive secondary metabolites in wines.

Funder

Ministerio de Ciencia, Innovación y Universidades of the Spanish Government

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3