Energy-Efficient Driving for Adaptive Traffic Signal Control Environment via Explainable Reinforcement Learning

Author:

Jiang XiaORCID,Zhang Jian,Wang Bo

Abstract

Energy-efficient driving systems can effectively reduce energy consumption during vehicle operation. Most of the existing studies focus on the driving strategies in a fixed signal timing environment, whereas the standardized Signal Phase and Timing (SPaT) data can help the vehicle make the optimal decisions. However, with the development of artificial intelligence and communication techniques, the conventional fixed timing methods are gradually replaced by adaptive traffic signal control (ATSC) approaches. The previous studies utilized SPaT information that cannot be applied directly in the environment with ATSC. Thus, a framework is proposed to implement energy-efficient driving in the ATSC environment, while the ATSC is realized by the value-based reinforcement learning algorithm. After giving the optimal control model, the framework draws upon the Markov Decision Process (MDP) to make an approximation to the optimal control problem. The state sharing mechanism allows the vehicle to obtain the state information of the traffic signal agents. The reward function in MDP considers energy consumption, traffic mobility, and driving comfort. With the support of traffic simulation software SUMO, the vehicle agent is trained by Proximal Policy Optimization (PPO) algorithm, which enables the vehicle to select actions from continuous action space. The simulation results show that the energy consumption of the controlled vehicle can be reduced by 31.73%~45.90% with a different extent of mobility sacrifice compared with the manual driving model. Besides, we developed a module based on SHapley Additive exPlanations (SHAP) to explain the decision process in each timestep of the vehicle. That can make the strategy more reliable and credible.

Funder

National Key R&D Program of China

Key R&D Program of Jiangsu Province in China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3