A Multiobjective Cooperative Driving Framework Based on Evolutionary Algorithm and Multitask Learning

Author:

Jiang Xia1ORCID,Zhang Jian12ORCID,Li Qing-yang1,Chen Tian-yi3

Affiliation:

1. Jiangsu Key Laboratory of Urban ITS, Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies and Jiangsu Province Collaborative Innovation Center for Technology and Application of Internet of Things, School of Transportation, Southeast University, Nanjing 210096, China

2. School of Engineering, Tibet University, Lhasa, Tibet 850000, China

3. Department of Civil & Environmental Engineering, University of Wisconsin-Madison, 1221 Engineering Hall, 1415 Engineering Drive, Madison, WI 53706, USA

Abstract

The development of connected and automated vehicle (CAV) techniques brings an upcoming revolution to traffic management. The control of CAVs in potential conflict areas such as on-ramps and intersections will be complex to traffic management when considering their deployment. There is still a lack of a general framework for dispatching CAVs in these bottlenecks, which is expected to ensure safety, traffic efficiency, and energy consumption in real time. This study aimed to fill the technique gap, and a comprehensive cooperative intelligent driving framework is put forward to study the problem, which can be used in both on-ramp and intersection scenarios. Based on a multi-objective evolutionary algorithm, CAVs are denoted as a sequence to be searched in solution space, while a multitask learning neural network with adaptive loss function is implemented for optimization target feedback to surrogate the simulation test procedure. The simulation results show that the proposed framework can get satisfying performance with low time and energy consumption. It can reduce time consumption by up to 16.51% for the on-ramp scenario and 9.8% for the intersection scenario, while reducing energy consumption by up to 16.39% and 11.39% for the two scenarios. Meanwhile, an analysis of computation time is carried out, illuminating the flexibility and controllability of the new strategy.

Funder

Jiangsu Provincial Key Research and Development Program

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3