A Comparative Study of IEEE 802.11bd and IEEE 802.11p on the Data Dissemination Properties in Dynamic Traffic Scenarios

Author:

Xue Shanzheng1ORCID,Gong Siyuan1ORCID,Li Xinyi1

Affiliation:

1. School of Information Engineering, Chang’an University, Xi’an 710021, China

Abstract

With the rapid deployment of intelligent transportation systems in real-life applications, both dedicated short-range communications (DSRC) and cellular Vehicle-to-Everything (C-V2X), utilized to enable V2X communication, are undergoing extensive development to meet the quality of service (QoS) demands of advanced vehicular applications and scenarios. Compared to C-V2X, which lacks fully validated effective reliability, DSRC has undergone extensive field testing worldwide, ensuring its practicality. IEEE 802.11bd, as the next-generation V2X (NGV) standard within DSRC, is expected to greatly exceed the performance of its predecessor, 802.11p. However, existing studies mention that the ambient traffic environment will influence the performance of V2X due to the cyber-physical properties of V2X. To fully assess the advancements of NGV, this study presents a comparative analysis of IEEE 802.11bd and IEEE 802.11p, focusing on dynamic traffic conditions. Specifically, the technical advancements of the IEEE 802.11bd standard are first theoretically examined, emphasizing significant enhancements in aspects like modulation and coding schemes, coding rates, and channel coding. Subsequently, these critical technical enhancements are implemented in Veins, a simulation framework for the Internet of Vehicles (IoV), encompassing large-scale dynamic traffic scenarios. The simulation results indicate that the IEEE 802.11bd standard significantly enhances the data transfer rate compared to IEEE 802.11p, achieving a stable twofold increase. Furthermore, the data transmission latency is reduced by over half compared to IEEE 802.11p, while the data transmission reliability experiences a noteworthy 20% enhancement. Notably, the enhanced data transmission mode of the IEEE 802.11bd standard requires an increased signal-to-noise ratio (SNR). Additionally, this research evaluates the data dissemination properties in the IoV and finds that the traffic volume has a limited impact on the data propagation speed.

Funder

National Natural Science Foundation of China

Provincial Key R&D Program of Shaanxi

China Postdoctoral Science Foundation

National Key R&D Program of China

Natural Science Basic Research Program of Shaanxi

Research Funds for the Central Universities, Chang’an University

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3