CVDMARL: A Communication-Enhanced Value Decomposition Multi-Agent Reinforcement Learning Traffic Signal Control Method

Author:

Chang Ande1,Ji Yuting2,Wang Chunguang3ORCID,Bie Yiming2ORCID

Affiliation:

1. College of Forensic Sciences, Criminal Investigation Police University of China, Shenyang 110035, China

2. School of Transportation, Jilin University, Changchun 130022, China

3. State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

Effective traffic signal control (TSC) plays an important role in reducing vehicle emissions and improving the sustainability of the transportation system. Recently, the feasibility of using multi-agent reinforcement learning technology for TSC has been widely verified. However, the process of mapping road network states onto actions has encountered many challenges, due to the limited communication between agents and the partial observability of the traffic environment. To address this problem, this paper proposes a communication-enhancement value decomposition, multi-agent reinforcement learning TSC method (CVDMARL). The model combines two communication methods: implicit and explicit communication, decouples the complex relationships among the multi-signal agents through the centralized-training and decentralized-execution paradigm, and uses a modified deep network to realize the mining and selective transmission of traffic flow features. We compare and analyze CVDMARL with six different baseline methods based on real datasets. The results show that compared to the optimal method MN_Light, among the baseline methods, CVDMARL’s queue length during peak hours was reduced by 9.12%, the waiting time was reduced by 7.67%, and the convergence algebra was reduced by 7.97%. While enriching the information content, it also reduces communication overhead and has better control effects, providing a new idea for solving the collaborative control problem of multi-signalized intersections.

Funder

plan project of the Department of Science and Technology, Jilin Province, China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3