FPS: Fast Path Planner Algorithm Based on Sparse Visibility Graph and Bidirectional Breadth-First Search

Author:

Li Qunzhao,Xie FeiORCID,Zhao Jing,Xu BingORCID,Yang Jiquan,Liu Xixiang,Suo Hongbo

Abstract

The majority of planning algorithms used are based on the occupancy grid maps, but in complicated situations, the occupancy grid maps have a significant search overhead. This paper proposed a path planner based on the visibility graph (v-graph) for the mobile robot that uses sparse methods to speed up and simplify the construction of the v-graph. Firstly, the complementary grid framework is designed to reduce graph updating iteration costs during the data collection process in each data frame. Secondly, a filter approach based on the edge length and the number of vertices of the obstacle contour is proposed to reduce redundant nodes and edges in the v-graph. Thirdly, a bidirectional breadth-first search is combined into the path searching process in the proposed fast path planner algorithm in order to reduce the waste of exploring space. Finally, the simulation results indicate that the proposed sparse v-graph planner can significantly improve the efficiency of building the v-graph and reduce the time of path search. In highly convoluted unknown or partially known environments, our method is 40% faster than the FAR Planner and produces paths 25% shorter than it. Moreover, the physical experiment shows that the proposed path planner is faster than the FAR Planner in both the v-graph update process and laser process. The method proposed in this paper performs faster when seeking paths than the conventional method based on the occupancy grid.

Funder

National Natural Science Foundation of China

Postgraduate Research & Practice Innovation Program of Jiangsu Province.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3