SOHD-LOAM: Suppress odometry height drift lidar odometry and mapping on undulating road

Author:

Qin Hao12,Zou Yanli12,Yu Guoliang12,Liu Huipeng12,Tan Yufei12

Affiliation:

1. Guangxi Key Laboratory of Brain-Inspired Computingand Intelligent Chips, School of Electronics and InformationEngineering, Guangxi Normal University, Guilin, Guangxi, China

2. Key Laboratory of Nonlinear Circuits and Optical Communications (Guangxi Normal University), Education Department of Guangxi Zhuang Autonomous Region, Guilin, China

Abstract

In the process of mapping outdoor undulating and flat roads, existing LiDAR SLAM systems often encounter issues such as map distortion and ghosting. These problems arise due to the low vertical resolution of multi-line LiDAR, which easily leads to the occurrence of odometry height drift during the mapping process. To address this challenge, this study propose a novel LiDAR SLAM system named SOHD-LOAM, designed specifically to suppress odometry height drift. This system encompasses several critical components, including data preprocessing, front-end LiDAR odometry, back-end LiDAR mapping, loop detection, and graph optimization. SOHD-LOAM leverages the road gradient limitation algorithm and the height smoothing algorithm as its core, while also integrating the Kalman filter, loop detection, and graph optimization techniques. To evaluate the performance of SOHD-LOAM, the comprehensive experiments are conducted with using KITTI datasets and real-world scenes. The experimental results demonstrate that SOHD-LOAM achieves superior accuracy and robustness in global odometry compared to the state-of-the-art LEGO-LOAM. Specifically, the height error of the sequences 00, 05 experiment was found to be 40.62% and 61.92% lower than that of LEGO-LOAM. Additionally, the maps generated by SOHD-LOAM exhibit no distortion or ghosting, thereby significantly enhancing map quality.

Publisher

IOS Press

Reference23 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3