Efficient Path Planning Algorithm Based on Laser SLAM and an Optimized Visibility Graph for Robots

Author:

Hu Yunjie1ORCID,Xie Fei1ORCID,Yang Jiquan1,Zhao Jing2,Mao Qi1,Zhao Fei3,Liu Xixiang4

Affiliation:

1. School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210023, China

2. The College of Automation and Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

3. The State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310058, China

4. The College of Instrument Science & Engineering, Southeast University, Nanjing 210096, China

Abstract

Mobile robots’ efficient path planning has long been a challenging task due to the complexity and dynamism of environments. If an occupancy grid map is used in path planning, the number of grids is determined by grid resolution and the size of the actual environment. Excessively high resolution increases the number of traversed grid nodes and thus prolongs path planning time. To address this challenge, this paper proposes an efficient path planning algorithm based on laser SLAM and an optimized visibility graph for mobile robots, which achieves faster computation of the shortest path using the optimized visibility graph. Firstly, the laser SLAM algorithm is used to acquire the undistorted LiDAR point cloud data, which are converted into a visibility graph. Secondly, a bidirectional A* path search algorithm is combined with the Minimal Construct algorithm, enabling the robot to only compute heuristic paths to the target node during path planning in order to reduce search time. Thirdly, a filtering method based on edge length and the number of vertices of obstacles is proposed to reduce redundant vertices and edges in the visibility graph. Additionally, the bidirectional A* search method is implemented for pathfinding in the efficient path planning algorithm proposed in this paper to reduce unnecessary space searches. Finally, simulation and field tests are conducted to validate the algorithm and compare its performance with classic algorithms. The test results indicate that the method proposed in this paper exhibits superior performance in terms of path search time, navigation time, and distance compared to D* Lite, FAR, and FPS algorithms.

Funder

National Natural Science Foundation of China

Scientific and Technological Achievements Program of Jiangsu Province

State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics

State Key Laboratory of helicopter dynamics

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3