Author:
Dong ,Chen ,Wang ,Shi ,Jiang ,Liu
Abstract
Optical scatterometry is known as a powerful tool for nanostructure reconstruction due to its advantages of being non-contact, non-destructive, low cost, and easy to integrate. As a typical model-based method, it usually makes use of abundant measured data for structural profile reconstruction, on the other hand, too much redundant information significantly degrades the efficiency in profile reconstruction. We propose a method based on dependence analysis to identify and then eliminate the measurement configurations with redundant information. Our experiments demonstrated the capability of the proposed method in an optimized selection of a subset of measurement wavelengths that contained sufficient information for profile reconstruction and strikingly improved the profile reconstruction efficiency without sacrificing accuracy, compared with the primitive approach, by making use of the whole spectrum.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献