Optical wafer defect inspection at the 10 nm technology node and beyond

Author:

Zhu JinlongORCID,Liu Jiamin,Xu Tianlai,Yuan Shuai,Zhang Zexu,Jiang Hao,Gu Honggang,Zhou Renjie,Liu ShiyuanORCID

Abstract

Abstract The growing demand for electronic devices, smart devices, and the Internet of Things constitutes the primary driving force for marching down the path of decreased critical dimension and increased circuit intricacy of integrated circuits. However, as sub-10 nm high-volume manufacturing is becoming the mainstream, there is greater awareness that defects introduced by original equipment manufacturer components impact yield and manufacturing costs. The identification, positioning, and classification of these defects, including random particles and systematic defects, are becoming more and more challenging at the 10 nm node and beyond. Very recently, the combination of conventional optical defect inspection with emerging techniques such as nanophotonics, optical vortices, computational imaging, quantitative phase imaging, and deep learning is giving the field a new possibility. Hence, it is extremely necessary to make a thorough review for disclosing new perspectives and exciting trends, on the foundation of former great reviews in the field of defect inspection methods. In this article, we give a comprehensive review of the emerging topics in the past decade with a focus on three specific areas: (a) the defect detectability evaluation, (b) the diverse optical inspection systems, and (c) the post-processing algorithms. We hope, this work can be of importance to both new entrants in the field and people who are seeking to use it in interdisciplinary work.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

National Science and Technology Major Project

Key Research and Development Plan of Hubei Province

Publisher

IOP Publishing

Subject

Industrial and Manufacturing Engineering

Reference200 articles.

1. TSMC to begin 3 nm mass production in 2021, report;Kundaliya,2020

2. Metrology for the next generation of semiconductor devices;Orji;Nat. Electron.,2018

3. Inspection of high-aspect ratio layers at sub 20 nm node;Vikram;Proc. SPIE,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3