Condition-number-based measurement configuration optimization for nanostructure reconstruction by optical scatterometry

Author:

Yang Tianjuan,Chen XiuguoORCID,Liu Shuo,Zhang Jiahao,Liu ShiyuanORCID

Abstract

Abstract The quality of the measured signature is influenced not only by the instrument’s precision but also by the selected measurement configuration. In optical scatterometry, the purpose of measurement configuration optimization (MCO) is to select an optimal or suboptimal combination of measurement conditions, such as the angles of incidence, azimuth, polarization and wavelength, to achieve higher measurement accuracy. This analysis not only requires an effective optimization strategy but is also time-consuming. In this work, we propose a general MCO method that incorporates error propagation theory and condition-number-based error estimation technique, by which the MCO problem can be formulated as an optimization problem for the condition number of the coefficient matrix in the linear estimation of parameter deviations. The method is demonstrated on a multi-wavelength Mueller matrix scatterometry measuring a Si grating. With the help of the neural-network-based surrogate model, the feasibility of the method is verified by making a comparison with Latin hypercube sampling. Fitting results of the measured and calculated Mueller matrix spectra obtained at the selected optimal measurement configuration show a good agreement. The proposed method is promising to provide an alternate solution to globally evaluate the MCO problem in optical scatterometry and other measurement scenarios.

Funder

National Natural Science Foundation of China

Key Research and Development Plan of Hubei Province

National Key Research and Development Plan of China

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing measurement configuration for x-ray critical dimension metrology based on condition number;Fourteenth International Conference on Information Optics and Photonics (CIOP 2023);2023-11-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3