Studies on Oxygen Permeation Resistance of SiCN Thin Film and RRAM Applications

Author:

Song Myeong-HoORCID,Ko Woon-San,Kim Geun-Ho,Choi Dong-Hyeuk,Lee Ga-WonORCID

Abstract

In this study, a silicon carbon nitride (SiCN) thin film was grown with a thickness of 5~70 nm by the plasma-enhanced chemical vapor deposition (PECVD) method, and the oxygen permeation characteristics were analyzed according to the partial pressure ratio (PPR) of tetramethylsilane (4MS) to the total gas amount during the film deposition. X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), and X-ray reflectivity (XRR) were used to investigate the composition and bonding structures of the SiCN film. An atomic force microscope (AFM) was used to examine the surface morphology of the SiCN films to see the porosity. The analysis indicated that Si–N bonds were dominant in the SiCN films, and a higher carbon concentration made the film more porous. To evaluate the oxygen permeation, a highly accelerated temperature and humidity stress test (HAST) evaluation was performed. The films grown at a high 4MS PPR were more susceptible to oxygen penetration, which changed Si–N bonds to Si–N–O bonds during the HAST. These results indicate that increasing the 4MS PPR made the SiCN film more porous and containable for oxygen. As an application, for the first time, SiCN dielectric film is suggested to be applied to resistive random access memory (RRAM) as an oxygen reservoir to store oxygen and prevent a reaction between metal electrodes and oxygen. The endurance characteristics of RRAM are found to be enhanced by applying the SiCN.

Funder

Ministry of SMEs and Startups

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3