A Simplified Analysis Method for the Deformation Response of an Existing Tunnel to Ground Surcharge Based on the Pasternak Model

Author:

Wei ZhengORCID,Jiang Yusheng

Abstract

Surface surcharge changes the existing equilibrium stress field of the stratum and adversely affects the existing tunnel. This paper presents a simplified analytical solution for calculating the longitudinal displacement of existing tunnels that are subjected to adjacent surcharge loading. Based on the Boussinesq solution, the distribution of the additional load matrix caused by the surface surcharge on the existing tunnel was obtained. A Euler–Bernoulli beam with a Pasternak foundation was used as a simplified model for tunnel stress analysis. Using the corrected reaction coefficient of the foundation bed, the differential equation of tunnel deformation was established, and the solution matrix of the longitudinal displacement of the tunnel was obtained by using the finite difference method. The reliability and applicability of the proposed method were verified by comparing the results with finite element simulation results, field test data, and the calculation results of three simplified elastic analysis methods with different foundation bed coefficients. On this basis, the parameters of the load–tunnel model were analyzed, and the effects of the buried depth, the size of the load, the relative positions of the load and the tunnel, and the relative stiffness of the tunnel soil on the maximum displacement of the existing tunnel were calculated. An empirical formula is proposed for calculating the maximum longitudinal displacement of the existing tunnel subjected to surface surcharge. The findings of this research can provide a basis for the theoretical verification of the deformation response of an existing tunnel subjected to adjacent surface surcharge.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3