Vertical Displacement Measurement of Tunnel Structures Based on Long-Gauge Fiber Bragg Grating Strain Sensing

Author:

Zhang Qingqing1ORCID,Li Ruixiao1ORCID,Yuan Huijun1,Zhong Huarong1

Affiliation:

1. School of Civil Engineering, Sichuan Agricultural University, Chengdu 611830, China

Abstract

Displacement monitoring systems play a crucial role in ensuring the safety of tunnels. Existing sensing technologies and analysis methods may be insufficient for monitoring tunnel displacement, particularly vertical displacement, due to the harshness of long-term monitoring conditions and the intricacies of structural characteristics. A long-gauge fiber Bragg grating (FBG) sensor can be used to obtain macro- and micro-level information and be connected in series for area sensing. In this study, a novel method was developed which utilizes long-gauge strain sensors to monitor the vertical displacement of a tunnel. This method employs a combination of mechanical analysis and monitoring data to accurately estimate the vertical displacement of the structure from the measured coupled strain. Several key aspects of the proposed method for identifying vertical displacement were investigated, including establishing a separation model of coupled strain on the cross-section, deriving the theory for vertical displacement identification, and determining the sensor layout of the tunnel. A series of simulation tests of a tunnel with a three-hole frame structure confirmed the efficiency and robustness of the proposed method, even when subjected to various loading conditions, noise levels, and sensor layouts. The results of this work may provide valuable insights and practical guidance for the effective and continuous displacement measurement of tunnels, ensuring their structural integrity and operational safety.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3