Abstract
The use of terrestrial laser scanning (TLS) point clouds for tunnel deformation measurement has elicited much interest. However, general methods of point-cloud processing in tunnels are still under investigation, given the high accuracy and efficiency requirements in this area. This study discusses a systematic method of analyzing tunnel deformation. Point clouds from different stations need to be registered rapidly and with high accuracy before point-cloud processing. An orientation method of TLS in tunnels that uses a positioning base made in the laboratory is proposed for fast point-cloud registration. The calibration methods of the positioning base are demonstrated herein. In addition, an improved moving least-squares method is proposed as a way to reconstruct the centerline of a tunnel from unorganized point clouds. Then, the normal planes of the centerline are calculated and are used to serve as the reference plane for point-cloud projection. The convergence of the tunnel cross-section is analyzed, based on each point cloud slice, to determine the safety status of the tunnel. Furthermore, the results of the deformation analysis of a particular shield tunnel site are briefly discussed.
Funder
Natural Science Foundation of Zhejiang Province
Science and Technology Commission of Shanghai Municipality
Subject
General Earth and Planetary Sciences
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献