Quantitative Analysis of Soil Displacement Induced by Ground Loss and Shield Machine Mechanical Effect in Metro Tunnel Construction

Author:

Zhu ,Chen ,Zhang ,Tu ,Chen

Abstract

In order to relieve the increasing ground traffic pressure in the process of urbanization in China, it is inevitable to build more metro lines. However, the stratum movement caused by tunneling affects the safety of adjacent underground structures and aboveground buildings. Therefore, how to evaluate and control the stratum movement is a prominent problem. In this paper, based on the engineering project of an interval tunnel between Shizishan Station and Chuanshi Station in Chengdu Metro Line 7, China, the action mechanism of stratum movement induced by shield tunneling is analyzed, and the effect factors are divided into two categories: ground loss factors and mechanical factors. Combining the advantages of Loganathan method and mirror source-sink method, a new solution of three-dimensional displacement induced by ground loss is proposed. Based on the elastic half-space Mindlin model, the displacement at any point induced by four mechanical effect factors is deduced. Finally, the total displacement is verified by field monitoring data and quantitative analyzed in various parts.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Local fisher formation identification method based on shield tunneling parameters;Fourth International Conference on Mechanical Engineering, Intelligent Manufacturing, and Automation Technology (MEMAT 2023);2024-04-01

2. Safety evaluation of buildings adjacent to shield construction in karst areas: An improved extension cloud approach;Engineering Applications of Artificial Intelligence;2023-09

3. 复合地层盾构交叠下穿施工下既有隧道变形分析;Journal of Central South University;2023-09

4. Simplified Thermal Model of Disk-Shaped Automotive Smart Braking Actuators;2022 IEEE Energy Conversion Congress and Exposition (ECCE);2022-10-09

5. Using recycled aggregate for seismically monitoring of embankment-subsoil model;Case Studies in Construction Materials;2021-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3