Author:
Zhang Heng,Chen Liang,Zhu Yimo,Zhou Zelin,Chen Shougen
Abstract
The problem of large deformation is very prominent in deep-buried tunnel excavation in soft rock, which brings serious potential safety hazards and economic losses to projects. Knowledge of the stress field distribution and deformation law is the key to ensuring rational design and safe construction in large deformation tunnels of soft rock. As described in this paper, theoretical analysis, numerical simulation and field monitoring were employed to investigate the surrounding rock stress and displacement state in the Dongsong hydropower station in Sichuan Province, China. The results show that the short-bench construction method can effectively control the deformation of surrounding rock and range of the plastic zone. In order to reserve enough working space, the optimum bench length in the actual construction was 10 to 14 m. The peripheral displacement and plastic radius decreased with the increase of tunnel support strength and the advance of supporting time. The displacement can be effectively controlled by applying the second lining in time at a position about twice the diameter of the hole (16 m) from the working face. A reasonable reserved deformation should be adopted to avoid secondary expanding excavation. The values of different positions in the tunnel laterally and longitudinally may be different, and adjustments are needed according to the actual situation.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献