Abstract
For tunneling in urban areas, understanding the interaction and behavior of tunnels and the foundation of adjacent structures is very important, and various studies have been conducted. Superstructures in urban areas are designed and constructed with piled rafts, which are more effective than the conventional piled foundation. However, the settlement of a piled raft induced by tunneling mostly focuses on raft settlement. In this study, therefore, raft and pile settlements were obtained through 3D numerical analysis, and the change rate of settlement along the pile length was calculated by linear assumption. Machine learning was utilized to develop prediction models for raft and pile settlement and change rate of settlement along the pile length due to tunneling. In addition, raft settlement in the laboratory model test was used for the verification of the prediction model of raft settlement, derived through machine learning. As a result, the change rate of settlement along the pile length was between 0.64 and −0.71. In addition, among features, horizontal offset pile tunnel had the greatest influence, and pile diameter and number had relatively little influence.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献