The In-Situ Observation of Grain Rotation and Microstructure Evolution Induced by Electromigration in Sn-3.0Ag-0.5Cu Solder Joints

Author:

Fu XingORCID,Liu Min,Xu KeXin,Chen Si,Shi YiJun,Fu ZhiWei,Huang Yun,Chen HongTao,Yao RuoHe

Abstract

The in-situ observation of Sn-3.0Ag-0.5Cu solder joints under electromigration was conducted to investigate the microstructure and grain orientation evolution. It was observed that there was a grain rotation phenomenon during current stressing by in-situ electron backscattered diffraction (EBSD). The rotation angle was calculated, which indicated that the grain reorientation led to the decrease of the resistance of solder joints. On the other hand, the orientation of β-Sn played a critical role in determining the migration of Cu atoms in solder joints under current stressing migration. When the angle between the electron flow direction and the c-axis of Sn (defined as α) was close to 0°, massive Cu6Sn5 intermetallic compounds were observed in the solder bulk; however, when α was close to 90°, the migration of the intermetallic compound (IMC) was blocked but many Sn hillocks grew in the anode. Moreover, the low angle boundaries were the fast diffusion channel of Cu atoms while the high grain boundaries in the range of 55°–65° were not favorable to the fast diffusion of Cu atoms.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3