Identification of Milk Adulteration in Camel Milk Using FT-Mid-Infrared Spectroscopy and Machine Learning Models

Author:

Yao Zhiqiu12,Zhang Xinxin12,Nie Pei13,Lv Haimiao12,Yang Ying12,Zou Wenna12,Yang Liguo12ORCID

Affiliation:

1. National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology of the People’s Republic of China, Huazhong Agricultural University, Wuhan 430070, China

2. Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China

3. College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China

Abstract

Camel milk, esteemed for its high nutritional value, has long been a subject of interest. However, the adulteration of camel milk with cow milk poses a significant threat to food quality and safety. Fourier-transform infrared spectroscopy (FT-MIR) has emerged as a rapid method for the detection and quantification of cow milk adulteration. Nevertheless, its effectiveness in conveniently detecting adulteration in camel milk remains to be determined. Camel milk samples were collected from Alxa League, Inner Mongolia, China, and were supplemented with varying concentrations of cow milk samples. Spectra were acquired using the FOSS FT6000 spectrometer, and a diverse set of machine learning models was employed to detect cow milk adulteration in camel milk. Our results demonstrate that the Linear Discriminant Analysis (LDA) model effectively distinguishes pure camel milk from adulterated samples, maintaining a 100% detection rate even at cow milk addition levels of 10 g/100 g. The neural network quantitative model for cow milk adulteration in camel milk exhibited a detection limit of 3.27 g/100 g and a quantification limit of 10.90 g/100 g. The quantitative model demonstrated excellent precision and accuracy within the range of 10–90 g/100 g of adulteration. This study highlights the potential of FT-MIR spectroscopy in conjunction with machine learning techniques for ensuring the authenticity and quality of camel milk, thus addressing concerns related to food integrity and consumer safety.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Identification and quantification of goat milk adulteration using mid-infrared spectroscopy and chemometrics;Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy;2025-01

2. Machine learning and electrochemistry techniques for detecting adulteration of goat milk with cow milk;Journal of Food Measurement and Characterization;2024-06-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3