Dual Substrate Specificity of the Rutinosidase from Aspergillus niger and the Role of Its Substrate Tunnel

Author:

Brodsky Katerina,Kutý Michal,Pelantová Helena,Cvačka JosefORCID,Rebroš Martin,Kotik Michael,Kutá Smatanová IvanaORCID,Křen VladimírORCID,Bojarová PavlaORCID

Abstract

Rutinosidases (α-l-rhamnopyranosyl-(1-6)-β-d-glucopyranosidases, EC 3.2.1.168, CAZy GH5) are diglycosidases that cleave the glycosidic bond between the disaccharide rutinose and the respective aglycone. Similar to many retaining glycosidases, rutinosidases can also transfer the rutinosyl moiety onto acceptors with a free –OH group (so-called transglycosylation). The recombinant rutinosidase from Aspergillus niger (AnRut) is selectively produced in Pichia pastoris. It can catalyze transglycosylation reactions as an unpurified preparation directly from cultivation. This enzyme exhibits catalytic activity towards two substrates; in addition to rutinosidase activity, it also exhibits β-d-glucopyranosidase activity. As a result, new compounds are formed by β-glucosylation or rutinosylation of acceptors such as alcohols or strong inorganic nucleophiles (NaN3). Transglycosylation products with aliphatic aglycones are resistant towards cleavage by rutinosidase, therefore, their side hydrolysis does not occur, allowing higher transglycosylation yields. Fourteen compounds were synthesized by glucosylation or rutinosylation of selected acceptors. The products were isolated and structurally characterized. Interactions between the transglycosylation products and the recombinant AnRut were analyzed by molecular modeling. We revealed the role of a substrate tunnel in the structure of AnRut, which explained the unusual catalytic properties of this glycosidase and its specific transglycosylation potential. AnRut is attractive for biosynthetic applications, especially for the use of inexpensive substrates (rutin and isoquercitrin).

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3